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ABSTRACT 
 
 
 
The Armed Services Vocational Aptitude Battery (ASVAB) is a test that 

approximately 700,000 students in 12,000 high schools take each year to determine 

military occupation placement.   Form Assembly for the ASVAB refers to the selection 

of 20-35 questions, known as items, from an item pool of approximately 300 items to 

create a paper and pencil test in one of its ten topics.  Previous research formulates form 

assembly as an Integer Linear Program (ILP).  The current ASVAB mostly uses a 

Computer Adaptive Test (CAT), which estimates an examinee’s ability after the 

examinee answers each item and selects the next item based on prior performance.  The 

current CAT-ASVAB implementation does not control the number of items selected from 

each subject (taxonomy group) for a test.  This thesis introduces ILPs, previously used for 

form assembly, that impose taxonomy restrictions and applies them to the CAT-ASVAB.  

We create four ILP variations and test them against the current method of item selection, 

by simulating 3,500 examinees (500 examinees each for seven given ability levels).  The 

results show that all of the ILPs have acceptable solution times for CAT use, and 

taxonomy restrictions can be imposed while also having more even exposure rates (the 

number of times an item is administered divided by the number of examinees) than the 

current implementation of the CAT-ASVAB.  A variation that relaxes most of the binary 

variables and constrains the difficulty of each item to be within a predetermined 

magnitude of the current ability estimate, performs the best in terms of item exposure (for 

both under and over-utilized items) and error between an examinee’s estimated ability 

level and actual ability level. 
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EXECUTIVE SUMMARY 
 
 

 

The Armed Services Vocational Aptitude Battery (ASVAB) is a test that 

approximately 700,000 students in 12,000 high schools take each year to determine 

military occupation placement.   Form Assembly for the ASVAB refers to the selection 

of 20-35 questions, known as items, from an item pool of approximately 300 items to 

create a paper and pencil test in one of its ten topics.  ASVAB form assembly has been 

previously formulated as an integer linear program (ILP) with an objective function that 

minimizes the deviation from a predetermined goal curve for the test. 

 

Most of the ASVAB tests are administered as a Computer Adaptive Test (CAT).  

The CAT estimates an examinee’s ability after the examinee answers each item and 

selects the next item based on prior performance.  Because the CAT is able to determine 

an examinee’s ability level after each question and select future questions based on this 

estimator, the test length for a CAT is shorter than a paper and pencil test.  However, the 

current CAT-ASVAB does not control the number of items selected from each subject 

(taxonomy group) for a test.  Therefore, this taxonomy distribution of the items in a test 

can be heavily skewed toward a particular subject.  A solution to this problem is for a test 

to not only select the next item, but select an entire test trajectory for the examinee’s 

current estimated ability.    This is called a shadow test, and this thesis combines a 

shadow test with previously researched paper and pencil form assembly for application to 

the CAT-ASVAB.   

 

This thesis also discusses other problems associated with the CAT, such as item 

exposure control and solution time.  One method it explores is item-stratification.  In this 

method, the item selection algorithm divides the item pool into groups according to their 

discrimination parameter (an item with a high discrimination parameter is able to separate 

examinees with nearly the same ability, whereas a low discrimination parameter does not 

separate them as well) and divides the test into an equal number of stages. The purpose is 



 xvi

to select items with a lower discrimination (and therefore lower information value) 

toward the beginning of a test, and leave items with a higher discrimination (and higher 

information value) until the end when the ability estimate is more accurate. 

 

There are five variations of CAT-ASVAB item selection considered in this thesis:  

1) A previously researched paper and pencil form assembly method for the ASVAB 

(KM);  2) KM that constrains the difficulty parameter (a parameter that measures the 

difficulty of an item) to be within a certain amount of the current ability level of the 

examinee (DM);  3) KM with the addition of item-stratification constraints (SM);  and 4) 

KM that has both difficulty parameter constraints and item stratification constraints 

(SDM); 5) The current item selection method of the CAT-ASVAB (OM), is  a 

benchmark to compare the other four.   Each of the five variations of the model is 

examined using 3,500 artificially generated examinees (500 examinees each for seven 

given ability levels).  Aside from SM and SDM having a high maximum exposure rate, 

our results indicate that all of the shadow test variations have more even exposure rates 

than the current implementation of the CAT-ASVAB, having significantly less unutilized 

items.  DM performs the best in terms of item exposure (for both under and over-utilized 

items) and error between an examinee’s estimated ability level and actual ability level.  

All of the variations benefit from the ability to add taxonomy constraints.  Without the 

taxonomy constraints, our results suggest that the current CAT implementation has a 

taxonomy distribution heavily favoring one of the taxonomy groups. 
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I. INTRODUCTION 

Since 1968, all US military applicants take the Armed Services Vocational 

Aptitude Battery (ASVAB) to determine military occupation placement.   Approximately 

700,000 students in 12,000 High Schools take this test every year [Pommerich 2005].   

Form assembly for the ASVAB refers to the selection of multiple choice questions, 

known as items, out of a given item pool to create a paper and pencil test in one of its ten 

topics.  A typical form has 20-35 items selected from an item pool of approximately 300 

items.  Kunde [1997] formulates form assembly as an integer linear program (ILP) and 

solves it both optimally and using heuristics.   

 

In 1997, many ASVAB tests were still commonly administered in their printed 

(paper and pencil) form.  The ASVAB has since moved toward being a Computer 

Adaptive Test (CAT) [e.g., Weiss 2004].  Other tests that use a CAT include the GRE 

[e.g., Syvum 2006] and GMAT [e.g., Princeton Review 2006].  The CAT estimates an 

examinee’s ability after the examinee answers each item and selects the next item based 

on this estimator.  This allows it to use fewer items than a paper and pencil exam to 

determine an examinee’s ability. 

 

The current CAT-ASVAB item selection algorithm does not currently take into 

account item taxonomy constraints [Sands, Waters, and McBride 1999].  A taxonomy 

constraint imposes a limit on the number of items from a given subject (e.g. Addition, 

Division, etc.).  Veldkamp and van der Linden (2004) use a shadow test to determine the 

next question.  A shadow test creates a whole test trajectory for the examinee’s current 

estimated ability then chooses the best item amongst that trajectory to administer.  By 

creating this whole test, other constraints can be added to the formulation, including 

taxonomy constraints.  

 

This thesis extends the ILP from Kunde [1997] for use as a shadow test and 

applies it to item selection for a CAT-ASVAB.  The primary extensions speed solution 

time and control item exposure.  Item exposure control refers to limiting the number of 
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times a test administers an item to a set of examinees.  Too many examinees receiving the 

same item increases the likelihood of a future examinee having advanced knowledge of 

an item. 
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II. BACKGROUND 

A. TEST THEORY 
The ASVAB uses Item Response Theory (IRT) to measure the precision of each 

test.  An examinee’s ability level is denoted as θ.  It is assumed that θ follows a standard 

normal distribution (mean of zero and a standard deviation of one).  The range of θ is 

commonly set between -3.0 and 3.0 or -2.5 or 2.5 [Sands, Waters, and McBride 1999].  In 

IRT, the probability of an examinee, with ability level θ, answering an item correctly is 

calculated with the three parameter logistic function shown below [Lord 1980]: 

p(θ) = c c
e Da b+
−

+ − −

1
1 ( )θ . 

 

Probability of Correct Answer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-2.5 -1.5 -0.5 0.5 1.5 2.5

Ability

p(
θ)

 
Figure 1: Sample Logistic Function 

In the above sample, the discrimination parameter: a=2.24, the 
difficulty parameter: b=0.72, and the guessing parameter: c=0.4 

 

The 3 parameters are a, b, and c, with D being a scaling factor.  The a parameter 

is the discrimination of the item.  This is the capability of the item to distinguish between 

applicants of different abilities.  In Figure 1, the a parameter is proportional to the slope 

of the logistic function at its inflection point.  The steeper the slope, the greater the 

difference examinees with different ability levels have in answering an item correctly; a 

flatter slope means examinees with different ability levels have more similar probabilities 

of a correct response. The b parameter measures the difficulty of an item.    In Figure 1, 

b 

c Inflection 
Point 
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the b parameter determines the position of the curve’s inflection point along the θ-axis.  

Finally, parameter c is the guessing parameter.  This is the probability of a person with a 

low ability level guessing the item correctly.  This parameter shows up in Figure 1 as the 

lower asymptotic bound on p(θ)’s axis. These parameters are typically calculated after 

the item has been pretested 1,000 to 10,000 times.  From here, the item information 

function can be derived from p(θ), [Lord 1980] 

Ii (θ) = p
p p

' (
( )( ( ))

θ
θ θ

)
−1

, or 

 

Ii (θ) = D a c
c e eDa b Da b

2 2 1
1

( )
( )( )( (

−
+ +− ) − − )θ θ , 

 

where 'p  is the derivative of p .  The presence of the derivative in the numerator 

indicates that items with a higher discrimination parameter have a higher information 

value.  Because the information contribution of each item is assumed to be independent 

of the other items in the ASVAB, the item information functions can be added together to 

produce an overall information curve.  With N being the number of items in the form, the 

exam information function is [Lord 1980]: 

 

 I(θ) = Ii
i

N

( )θ
=
∑

1

. 

 

This function measures the precision of the exam in estimating an examinee’s true 

ability level.  The next section shows how the above information function is applicable to 

form assembly. 

 

B. OPTIMIZATION OF FORM ASSEMBLY FOR ASVAB (PAPER AND 
PENCIL) 

This section describes Kunde’s paper and pencil formulation, which is used in the 

optimization model in this thesis for the CAT-ASVAB.  Kunde’s formulation has two 

goals expressed in the objective function.  The first is to minimize the difference between 
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the information of the exam and the information from a goal curve.  A goal curve is a test 

information function like the one introduced in the previous section that represents the 

desired information distribution of the exam across the ability levels.  It is produced from 

empirical research and testing.  The deviations between an assembled form and the goal 

curve for specific values of θ are organized by their magnitude into groups which are 

denoted in the formulation below by the index g.  Each group is assigned a penalty per 

unit of deviation.  Higher deviations from the goal curve receive a higher penalty per unit 

deviation. 

 

For security purposes, alternate forms are created for an exam (denoted by the 

index f).  This leads to the second goal of the formulation: to make each form as similar 

as possible in information.  The second component of the objective function seeks to 

minimize the deviations of each form from the first reference form.  

 

Below is Kunde’s integer linear program formulation for the paper and pencil 

form.  

 

Indices: 

 i   item from the item pool; 

 θ   ability level; 

 f   form to be assembled (1,2,…F); 

 t  taxonomy(1,2,…T); 

 g  penalty group 

Sets: 

  TaxItemst    The set of items in taxonomy group t 

Data: 

    CATg  The maximum deviation between a form and the goal curve in group g 

   INFiθ  Information value of item i at percentile θ  

   NITEMt    The required number of items in taxonomy t 

   PARAWEI        Weight that combines the two goals 
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  PENALTYg   Penalty per unit deviation within group g 

  SHAPEθ    The information value for the goal curve at percentile θ 

  

Variables:  

 xif  One, if item i is used in form f 

 py fgθ  Deviation above the goal curve in group g at percentile θ on form f 

 ny fgθ  Deviation below the goal curve in group g at percentile θ on form f 

 delplus f  The total information form one contains that exceeds form f 

 delneg f  The total information form f contains that exceeds form one 

 

Formulation: 

 min  

 PENALTY py ny PARAWEI delplus delnegg fg fg
gf

f f
f

( ) ( )θ θ
θ

+ + −∑∑ ∑∑
>1

 (k1) 

 such that 

 θθθ SHAPExINFpy if
g i

ifg −≥∑ ∑  ∀θ , f  (k2) 

 ny INF x SHAPEfg
g

i if
i

θ θ θ∑ ∑≥ − +  ∀θ , f  (k3) 

      x NITEMif
i TaxItem

t
t∈

∑ =  tf ,∀  (k4) 

 xif
f

≤∑ 1 i∀  (k5) 

 ∑∑ ∑∑−
i i

ifiii xINFxINF
θ θ

θθ 1 = delplus f - delneg f   1>∀f  (k6) 

 0 ≤ fgpyθ ≤ CATg  gf ,,θ∀  (k7) 

 0 ≤ ny fgθ ≤ CATg  gf ,,θ∀  (k8) 

 ifx  binary fi,∀  (k9) 

 delplus f , delneg f ≥ 0 f∀  (k10) 
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The first component in the objective function (k1), corresponding to the first goal 

of minimizing deviation from the goal curve, ( )g fg fgf g
PENALTY py nyθ θθ

+∑ ∑ ∑ , 

expresses the vertical deviation from the goal curve.  The variables py fgθ  and ny fgθ  are 

the positive and negative deviations, respectively, of form f from the goal curve, in group 

g, for ability θ.  In the second component of the objective function, 

PARAWEI
1
(

f >∑ delplus f + delneg f ), the variable delplus f  is the total form one 

information in excess of form f, while delneg f  is the total form f information in excess of 

form one.  

 

Constraints sets (k2) and (k3) give the values for the positive and negative 

deviations of the information function from the goal curve.  Set (k4) specifies the number 

of items in a form from a given taxonomy.  Set (k5) states that item i can only appear in 

at most one form.  Set (k6) gives the total difference in information between the forms, 

and sets (k7) and (k8) bound the deviations of the information function from the goal 

curve. 

 

C. CAT-ASVAB 
The formulation above optimizes the objective function across all θs, and creates 

a form that satisfies a set of specified attributes (e.g., length and taxonomy).  In a CAT, 

the examinee’s current performance on the exam determines each item that is 

administered.  Therefore, at a given point in an exam, an individual with a higher ability 

level receives an item of more difficulty than an individual with a lower estimated ability.  

Because the examinee receives an item based on his estimated ability, the exam can 

produce a better estimate for the examinee’s ability in fewer questions.  As currently 

implemented, all examinees start with the same average ability level estimate, θ0 = 0.  

The CAT-ASVAB uses the Owens Bayes algorithm of calculating the ability after each 

item is answered.  Because the order of items administered affects the ability calculation, 

an additional Bayesian module calculation is used to calculate θ at the end of the test.  

Currently, the item selection algorithm for the CAT-ASVAB seeks to maximize the item 
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information function at the examinee’s current θ and limit item exposure.  The 

information values are pulled from a table by θ. [Sands, Waters, and McBride 1999]   

 

1. Shadow Test 
One method proposed to deal with the taxonomy constraints is a shadow test [e.g. 

van der Linden and Veldkamp 1998].  Instead of merely calculating the best item to 

administer at the current θ, a whole test trajectory is constructed for the examinee at the 

current θ.  The indices used in the formulation below are the same as in Kunde’s 

formulation with the addition of an index h, a quantitative attribute group.  An example 

of a quantitative attribute group is the total word count for all items in the group adding 

up to a pre-specified total.  Thus, a possible constraint would be to limit the total word 

count for a set of items in each group h.  This is represented by the following constraints: 

 L x UHih i h
i Qh

≤
∈
∑  ∀h  

 L x LHih i h
i Qh

≥
∈
∑  ∀h , 

where Lih , in this example, is the word count for item i, UHh  and LHh  are an upper and 

lower bound respectively on the sum of the word counts for all items in group h, and Qh  

is the set of items in group h.  Below is Veldkamp and van der Linden’s formulation 

using notation consistent with Kunde’s formulation above.    

 

Indices: 

 k iteration count where examinee is given his kth question 

 h quantitative attribute group 

 

Sets: 

 Fix   The set of items already administered 

 Qh    The set of items in quantitative attribute group h 

  

Data: 
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 θk−1  Current ability estimate after k-1 items have been administered  

 Lih  Quantitative attribute for item i for attribute group h 

 UHh  Upper bound for number of items in group h 

 LHh  Lower bound for number of items in group h 

 UTt  Upper bound for number of items in taxonomy t 

 LTt  Lower bound for number of items in taxonomy t 

 )(θiI    The item information value at θ  

Decision Variable: 

 ix  One, if item i is used in the shadow test 

Formulation: 

max ∑ −
i

iki xI )ˆ( 1θ  (v1) 

such that 

 xi = 1 ∀ ∈i Fix  (v2) 

 x UTi
i TaxItemst

t
∈
∑ ≤  ∀t  (v3) 

 x LTi
i TaxItemst

t
∈
∑ ≥  ∀t  (v4) 

 ∑
∈

≤
hQi

hiih UHxL  ∀h  (v5) 

 ∑
∈

≥
hQi

hiih LHxL  ∀h  (v6) 

 Nx
i

i =∑    (v7) 

 xi  binary ∀i  (v8) 

 

The model selects the item with the greatest information from the items in the 

shadow test that have not already been administered at the current ability, θk−1 .  

Constraint set (v2) sets xi  to 1 for the items i that have already been administered. 

Constraint sets (v3) and (v4) are taxonomy constraints and set an upper and lower limit 
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respectively on the number of items administered from each taxonomy group.  Constraint 

sets (v5) and (v6) are the above mentioned quantitative attribute constraints.  “Because 

each shadow test meets the constraints, the adaptive test automatically meets them” [van 

der Linden and Veldkamp 2004]. 

 

2. Taxonomy and Item Exposure Control Research for CAT 

Much research has been done on different ways to implement CAT.  Because one 

of the main concerns with CAT is item exposure control, many papers written about CAT 

implementation discuss possible solutions for this issue.  The CAT-ASVAB currently 

uses Sympson and Hetter’s [1985] algorithm to control item exposure.  This thesis uses 

this algorithm for its optimization model as well.  The Sympson and Hetter algorithm 

assigns a number between zero and one, called the item exposure parameter, to each item.  

A pretest simulation determines these parameters.  Items with a higher exposure rate at 

the end of the simulation receive a lower exposure parameter.  During the actual test, 

when the test selects an item, it generates a random number uniformly distributed 

between zero and one.  If the item exposure parameter of this item is less than the random 

number, the test rejects the item and selects the item with the next highest information 

value, and so on.   

 

Another technique to control item exposure is called 5-4-3-2-1 [Sympson and 

Hetter 1997].   The first item is chosen randomly out of the five most informative items.  

The next item is then chosen randomly out of the four most informative, and so on until it 

is choosing from one item.  Afterwards, the procedure starts over again at five items.  

Another randomization technique is to choose one item out of three, then disqualify the 

other two from further administration [Thomasson 1998].   Another technique does not 

use the item information value, but randomly selects from items within a specified 

distance from a target difficulty level [Lunz and Stahl 1998]. 

 

Other methods require a more significant change in item or test structure to 

address item exposure control.  One method is item stratification, and this thesis also 

includes this method into its optimization model.  Items fall into n groups called strata by 
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their a parameters, and exams divide into n stages.  For a model with taxonomy 

constraints, this first categorizes the items by their taxonomy before sorting the items 

within each taxonomy by the a parameter.  It then divides the items in each taxonomy 

into n groups.  Items from the first group in each taxonomy go into the first strata, items 

from the second group go into the second strata, and so on until there are n strata.  During 

the nth stage, the test selects an item from the nth strata [Leung, Chang, and Hau 2003].  

Item stratification selects items with a lower discrimination value near the beginning of 

the test.  Because items with a higher discrimination also carry higher information values, 

item stratification is contrary to the typical approach of selecting the item with the highest 

information value.  Item stratification reserves the items that carry more information 

toward the end of the exam where the ability estimate is closer to the true ability.  In a 

study done by Chang and van der Linden, item stratification yields more even exposure 

rates throughout the items, thus having fewer underexposed and overexposed items.  

Below is the formulation of the item stratification model into a shadow test.  The indices 

are the same as the shadow test formulation given in the previous section, with the 

addition of the index r, the stratum.  [Chang and van der Linden, 2003] 

 

Indices: 

 r stratum; 

 

Sets: 

 Qrk
   The set of items at the strata r when selecting item k 

  

Data: 

 Sr  The required number of items from strata r 

 Bi  Difficulty of item i (standard deviations from θ=0) 

  

Variables: 

 y Deviation of item’s difficulty parameter from θk−1  
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Formulation: 

 min y (c1) 

 such that 

 ( Bi -θk−1 ) xi  ≤ y ∀ ∈i Qrk
 (c2) 

 ( Bi -θk−1 ) xi  ≥ - y ∀ ∈i Qrk
 (c3) 

 xi = 1 ∀ ∈i Fix  (c4) 

 x Si
i Q

r
rk∈
∑ =  ∀r  (c5) 

 x UTi
i TaxItemst

t
∈
∑ ≤  ∀t  (c6) 

 x LTi
i TaxItemst

t
∈
∑ ≥  ∀t  (c7) 

 ∑
∈

≤
hQi

hiih UHxL  ∀h  (c8) 

 ∑
∈

≥
hQi

hiih LHxL  ∀h  (c9) 

 y ≥ 0   (c10) 

 xi  binary ∀i  (c11) 

 

Items with a difficulty parameter closest to the current estimate of ability, θk−1 , 

are chosen within the given constraints.  Constraint set (c4) specifies the number of items 

that must come from each strata.  The rest of the constraints are the same as the shadow 

test. 

 

Another method, the Computerized Adaptive Sequential Test (CAST), partitions 

the test into a collection of subtests such that these subtests become the units of test 

administration instead of items [Davis and Dodd 2003].   This method groups the items 

into subtests called modules and places them in multistaged panels.  There are two ways 

to construct the panels.  The first is bottom-up construction that assembles the items into 

modules such that each module, as a self-contained unit, meets the requisite information, 
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content, and item feature targets selected for the test [Davis and Dodd 2003]. The second 

method of panel construction is top-down, where any module path through the panel 

results in a test of appropriate precision, content, and item type [Davis and Dodd 2003].  

The method used in Davis and Dodd’s study is the bottom-up construction.  With the 

exception of the first stage, the test segregates the modules by difficulty level in each 

stage.  The first stage has only one module.  A typical allocation for the other stages 

would place three modules in the second and third stage, with each module corresponding 

to a low, medium, and high difficulty.  A panel is randomly assigned to an examinee at 

the beginning.  From there, at the first stage, the examinee receives a subtest.  When the 

examinee completes the module, the test calculates his ability, and in the next stage, it 

bases the next module the examinee receives on his current estimated ability.  An 

examinee can only move up one level between stages.  For example, one cannot receive 

an easy module after completing a hard module the stage before.  Like a-stratification, 

this method also yielded more even exposure rates [David and Dodd 2003]. 

 

Two of the methods mentioned above for item exposure control, the Sympson and 

Hetter algorithm and item stratification, are incorporated into the optimization model for 

this thesis as well as alternate forms from the paper and pencil exam.  Shadow tests in the 

existing research use the existing maximum information or minimum difficulty deviation 

as objective functions.  The formulation in the following section, however, uses the 

deviation from a goal curve as in Kunde’s paper and pencil formulation for the objective 

function.   
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III. THE CAT-ASVAB OPTIMIZATION MODELS 

A. SHADOW TEST FORMULATION AND VARIATIONS 
The integer linear program (ILP) in this thesis uses Kunde’s formulation as a 

starting point and adapts it for use in the CAT-ASVAB as a shadow test.  In his paper and 

pencil formulation, Kunde uses alternative forms as a means of test security.  This 

shadow test formulation retains the alternative forms as a means of item exposure control 

along with the Sympson-Hetter method.  For this thesis, the test creates two forms, with 

15 items each, for each shadow test.  An examinee starts off on one of the forms.  Each 

item selected first goes through the Sympson-Hetter algorithm.  If the algorithm rejects 

an item, the test administers the item with the most information from the alternative form. 

The test does not use the rejected items again for the remainder of the exam.  If the 

Sympson-Hetter algorithm also rejects the item from the alternative form, the test goes 

back and selects the next most informative item from the first form, and so on.  If the 

items in the shadow tests to choose from run out, the test reruns the model to obtain a 

new shadow test. 

 

As mentioned earlier, the solution time of the shadow test is critical.  To speed up 

solution times, this formulation relaxes Kunde’s ILP such that only the xif value for the 

current item needs to be binary, while the rest of the xif values can be continuous.  

Allowing continuous variables could decrease overall solution quality, but we did not 

observe any substantial differences.  For the relaxation, the formulation splits xif  into a 

binary and continuous component, xbif  and xcif ,  respectively.  Therefore the constraint 

set from the original formulation: 

 

ifx  binary fi,∀  

 

is replaced with the below constraint sets. 

 

0 1≤ ≤xif  fi,∀  
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0 1≤ ≤xcif  fi,∀  

xbif  binary fi,∀  

x xb xcif if if= +  fi,∀  

 

To specify that at least one xif , other than the administered items, is an integer, the 

following constraint is added. 

 

xb xif
i

if
i Fix

∑ ∑≥ +
∈

1  f∀  

 

Kunde’s formulation, along with the addition of the above constraints, establishes 

the base model for this thesis (KM).  For this thesis, we develop three other variations for 

comparison.  One variation (DM) comes from the observation that items administered 

with a higher deviation between the b parameter and current ability estimate tend to have 

a smaller effect on the ability estimate.  For example, if an individual answered an item 

correctly in which the difficulty parameter was far below his current ability, it would 

barely affect the new ability estimate.  Therefore, for this variation, the two constraints 

below are added to constrain the difficulty parameter to be within a given number, BLIM, 

of the current ability estimate.   

 

 ( bi -θk−1 ) xif  ≤ BLIM ∀ ∉i Fix  

 ( bi -θk−1 ) xif  ≥ - BLIM ∀ ∉i Fix  

 

Using the same notation as Kunde’s formulation and van der Linden’s sample 

shadow test, below is the formulation for this variation. 

 

Data: 

 BLIM Maximum deviation of item difficulty from current ability 

  

Variables:  
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 xif  One, if item i is used in form f 

 xcif  Continuous component of xif  

 xbif  Binary component of xif  

 

Formulation: 

 min  

 PENALTY py ny PARAWEI delplus delnegg fg fg
gf

f f
f

( ) ( )θ θ
θ

+ + −∑∑ ∑∑
>1

 (d1) 

 s.t. 

 θθθ SHAPExINFpy if
g i

ifg −≥∑ ∑  ∀θ , f  (d2) 

 ny INF x SHAPEfg
g

i if
i

θ θ θ∑ ∑≥ − +  ∀θ , f  (d3) 

      x NITEMif
i TaxItem

t
t∈

∑ =  tf ,∀  (d4) 

 xif
f

≤∑ 1 i∀  (d5) 

 ( bi -θk−1 ) xif  ≤ BLIM ∀ ∉i Fix f,  (d6) 

 ( bi -θk−1 ) xif  ≥ - BLIM ∀ ∉i Fix f,  (d7) 

 ∑∑ ∑∑−
i i

ifiii xINFxINF
θ θ

θθ 1 = delplus f - delneg f   1>∀f  (d8) 

 0 ≤ fgpyθ ≤ CATg  gf ,,θ∀  (d9) 

 0 ≤ ny fgθ ≤ CATg  gf ,,θ∀  (d10) 

    xif = 1 ∀ ∈i Fix f,  (d11) 

 x xb xcif if if= +  fi,∀  (d12) 

 xb xif
i

if
i Fix

∑ ∑≥ +
∈

1  f∀  (d13) 

 0 1≤ ≤xif  fi,∀  (d13) 

 0 1≤ ≤xcif  fi,∀  (d15) 
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 xbif  binary fi,∀  (d16) 

 delplus f , delneg f ≥ 0 f∀  (d17) 

 

 

The second variation (SM) uses item stratification.  It adds the below constraint, 

adapted from Chang and van der Linden’s shadow test formulation with item 

stratification, to the formulation.   

x Sif
i Q

r
r∈
∑ =  ∀r f,  

In order to ensure that the decision variable for an item from the current stage is binary, 

the formulation sets all of the items in the shadow test at the current stage as binary.  The 

below constraint achieves this purpose. 

xb Sif
i Q

r
r∈

∑ =  ∀ =r CURSTG f,  

where CURSTG is the current stage of the exam. 

 

The third variation (SDM) combines the DM and SM formulations.  However, 

instead of adding the two constraints to limit the difficulty parameter, the formulation 

relaxes the two constraints and inserts them into the objective function as a price for 

deviating too far from the current ability estimate.  The new objective function is 

therefore 

min PENALTY py ny PARAWEI delplus delnegg fg fg
gf

f f
f

( ) ( )θ θ
θ

+ + −∑∑ ∑∑
>1

  

   + DIFPEN ( )pbdev nbdevif if
fi

+∑∑  

 

where pbdevif  and nbdevif  are given below 

  

 ( bi -θk−1 ) xif  ≤ BLIM + pbdevif  ∀ ∉i Fix f,  



19 

 ( bi -θk−1 ) xif  ≥ - BLIM - nbdevif  ∀ ∉i Fix f, , 

 

and DIFPEN is the penalty per unit for more than BLIM units over or under the current 

ability estimate.  The reason for not adding the difficulty constraints directly into the 

formulation is because combined with the item stratification constraints, the addition of 

the difficulty parameter constraints tends to result in an infeasible solution.  Below is the 

SDM formulation. 

 

Data: 

 CURSTG Current stage of exam 

 

Variables: 

pbdevif  The additional positive deviation of item i’s difficulty parameter from the  

current ability estimate greater than BLIM 

nbdevif  The additional negative deviation of item i’s difficulty parameter from the 

current ability estimate less than BLIM 

 

  

Formulation: 

 Min 

  PENALTY py ny PARAWEI delplus delnegg fg fg
gf

f f
f

( ) ( )θ θ
θ

+ + −∑∑ ∑∑
>1

  

       + DIFPEN ( )pbdev nbdevif if
fi

+∑∑  (sd1) 

 

 s.t. 

 θθθ SHAPExINFpy if
g i

ifg −≥∑ ∑  ∀θ , f  (sd2) 

 ny INF x SHAPEfg
g

i if
i

θ θ θ∑ ∑≥ − +  ∀θ , f  (sd3) 
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      x NITEMif
i TaxItem

t
t∈

∑ =  tf ,∀  (sd4) 

 xif
f

≤∑ 1 i∀  (sd5) 

 ( bi -θk−1 ) xif  ≤ BLIM + pbdevif  ∀ ∉i Fix , f (sd6) 

 ( bi -θk−1 ) xif  ≥ - BLIM - nbdevif  ∀ ∉i Fix , f (sd7) 

 ∑∑ ∑∑−
i i

ifiii xINFxINF
θ θ

θθ 1 = delplus f - delneg f   1>∀f  (sd8) 

 0 ≤ fgpyθ ≤ CATg  gf ,,θ∀  (sd9) 

 0 ≤ ny fgθ ≤ CATg  gf ,,θ∀  (sd10) 

    xif = 1 ∀ ∈i Fix f,  (sd11) 

 x xb xcif if if= +  fi,∀  (sd12) 

 xb Sif
i Q

r
r∈

∑ =  ∀ =r CURSTG f,  (sd13) 

 x Sif
i Q

r
r∈
∑ =  ∀r f,   (sd14) 

 0 1≤ ≤xif  fi,∀  (sd15) 

 0 1≤ ≤xcif  fi,∀  (sd16) 

 xbif  binary fi,∀  (sd17) 

 delplus f , delneg f ≥ 0 f∀  (sd18) 

 

 

B. ABILITY CALCULATION 

The Owens Bayes algorithm [Sands, Waters, and McBride 1999], which the 

CAT-ASVAB normally uses to calculate the ability after an examinee answers each item, 

assumes that if an examinee answers an item correctly, he receives a more difficult item 

next, and if he answers incorrectly, he receives an easier item [Krass 2005].  Because 

none of the shadow test variations above consistently follow this behavior, this thesis 

uses a different algorithm to estimate the ability after an examinee answers each item.  
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This algorithm, developed by Dan Segall of DMDC, unlike the Owens Bayes algorithm, 

is independent of the order the test administers the items and whether or not the test 

administers an item of higher difficulty to an examinee after a correct answer [Krass 

2005].  Calculation time is slower than the Owens Bayes algorithm, but it is still within 

30 seconds, which is our criterion for an acceptable solution time for a CAT [Krass 

2005]. 
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IV. RESULTS OF CAT-ASVAB OPTIMIZATION SIMULATIONS 

A. SETUP FOR SIMULATION 
To test the performance of the model, we run simulations for each shadow test 

variation.  GAMS [GAMS 2006] generates all integer linear programs (ILP) and XA 

[Sunset 2003] solves them on a 1.7 GHz Dell workstation.  We use a similar approach to 

Chang and van der Linden’s paper on item stratification and select a few ability levels for 

the simulations.  Those ability levels are  θ=−1.5, −1.0, −0.5, 0, 0.5, 1.0, and 1.5.  For 

each of these ability levels, the simulation creates 500 examinees.  Each examinee takes a 

test generated by each of the five variations.  The first is the current implementation of 

the CAT-ASVAB, which administers items by maximum information (OM).  This is the 

benchmark for comparing the other four variations.  The other four shadow test variations 

come from a CAT-ASVAB optimization formulation: the variation derived from Kunde’s 

paper and pencil formulation adapted for the CAT (KM), the variation with constraints on 

the difficulty parameters (DM), the variation using item stratification (SM), and the 

variation with item stratification and difficulty parameter constraints (SDM). 

 Discretization of ability levels provide information only for those values of θ 

selected. But we have high confidence for those ability levels. This discretization also 

corresponds to an underlying assumption that examinee ability levels follow a uniform 

distribution.  An alternative strategy would be to sample from a continuous distribution 

(for example, the standard normal).  Previous CAT research has observed that sampling 

from a continuous distribution of θ would imply using enormous sample sizes to get 

reasonable estimates of the bias and mean squared error (MSE) functions, which still 

would have to be pooled over classes of θ values and be accurate only near the center of 

the distribution [Chang and van der Linden, 2003].  There are two consequences from 

this assumption.  “First, the results for the bias and MSE functions are conditional on θ 

[Chang and van der Linden, 2003].”   But, because the accuracy of these functions are not 

dependent on the distribution of the examinees, one can generalize the results for the bias 

and MSE to any population of examinees.  “Second, the results for the item exposure 

rates do not necessarily generalize to other populations of examinees [Chang and van der 

Linden, 2003].”   
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The item pool contains approximately 170 items and comes from the 

Mathematical Knowledge test for the CAT-ASVAB [Sands, Waters, and McBride 1999].  

These items are an experimental set and are not an actual item pool currently in use for 

the CAT-ASVAB.  Each shadow test variation has about 2,500 constraints, 350 binary 

variables, and 2,000 continuous variables. 

The initial ability estimate for each test variation is θ = 0.  After the simulated 

examinees take the tests, the simulation outputs a set of deviations between the true and 

estimated θ for each examinee.  Then using S-Plus 6.2 [Insighful 2003], we run a 

Wilcoxon Sign-Rank Test to compare each shadow test variation’s deviation distribution 

to OM [e.g. Conover 1999].   Table 1 gives the parameters used for the shadow tests. 
For all Shadow Test Variations 
Forms per Shadow Test 2 
Number of Items per Form 15 
Scaling Factor (D) 1.7 
Number of items required from taxonomy 
group 1 ( NITEM

1
) 2 

Number of items required from taxonomy 
group 2 ( NITEM2 ) 4 

Number of items required from taxonomy 
group 3 ( NITEM3 ) 8 

Number of items required from taxonomy 
group 4 ( NITEM4 ) 1 

For DM and SDM 
Maximum allowable deviation of difficulty 
from current ability (bLimit) 0.5 

For SM and SDM 
Number of items required from strata 1 ( S1 ) 3 
Number of items required from strata 2 ( S2 ) 4 
Number of items required from strata 3 ( S3 ) 4 
Number of items required from strata 4 ( S4 ) 4 
Repetitions (or  number of examinees) 500 

 
Table 1:  Parameter Settings for Formulations 

There are five variations altogether (the four shadow test variations and 
OM) with 3,500 repetitions for each (500 repetition for seven given ability 
levels).  

 

B. RESULTS 
Table 2 shows the taxonomy distribution for the simulations.  The simulation 

altogether selects 52,500 items (15 items for each of the 3,500 tests) for each test 

variation.  OM performs poorly in terms of the taxonomy constraints specified.  A 

majority of items administered in the OM simulation come from taxonomy group 3.  This 
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is most likely because in the item pool, 103 of the 170 items are in taxonomy group 3.  

On the other hand, the four shadow test variations follow the taxonomy constraints shown 

in Table 1. 

 
Taxonomy 

Group KM, DM, SM, and SDM OM 
1 7000 2858 
2 14000 6028 
3 28000 40150 
4 3500 3464 

 
Table 2: Taxonomy Distribution 

Taxonomy distribution for OM heavily favors taxonomy group 3, while 
the taxonomy distribution for KM, DM, SM, and SDM  follow the 
parameters set by the simulation (shown in Table 1) 
 

Table 3 shows the solution times of each shadow test variation.  The times include 

the program generation, runtime, and output time for GAMS.  KM and DM have 

acceptable results with maximum solution times under 10 seconds.  The item 

stratification variations, SM and SDM, however, have higher maximum solution time.  

The long solution time occurred primarily at the selection of the 12th item, which is the 

beginning of the 4th and final stage.  With the exception of that item, solution times are as 

quick as the other variations for the selection of the rest of the items in the test.  If 

needed, the maximum solution times could possibly be reduced by using direct problem 

generation or another solver.  But, we do not explore these options in this thesis. 

Solution Time (seconds) 
Shadow Test 

Variation Max Min Average 
KM 7.731 0.24 0.472 
DM 3.245 0.27 0.522 
SM 1036.66 0.27 1.865 

SDM 189.012 0.34 3.924 
 

Table 3: Solution Times 
The solution time for KM, DM, SM, and SDM, on average, is acceptable.  
But, the high maximum solution times for SM and SDM make them 
infeasible options. 
 

Figure 2 shows the exposure rates of the items for each variation.  They are 

calculated by dividing the number of times the item is administered by the number of 

tests.  The x-axis lists the items in descending order according to their exposure rates.  
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Although SM and SDM start off much higher, all of the shadow test variations eventually 

end up approaching a more uniform distribution than OM.  OM has the highest amount of 

unused items at 77 items.  SDM and SM have the next highest number of unused items at 

37 and 34 items respectively.  Of even more concern, however, are the extremely high 

exposure rates with SM carrying a maximum exposure rate of 1 and SDM carrying a 

maximum exposure rate of 0.86.  The problem items, although different for each 

variation, are distributed at the start of the exam.   A possible reason for this is that items 

at the beginning of the test have a lower discrimination.  So their Sympson and Hetter 

parameters are very high (close to or equal to 1), making the test much less likely to 

reject the items.  Therefore, the Sympson and Hetter algorithm would rarely reject an 

item at the first stage.  KM and DM administered all of the items in their simulations.  As 

the graph shows, the curves for KM and DM have the flattest slopes, which indicate low 

maximum exposure rates and low number of unutilized items. 
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Figure 2: Exposure Rates: 

OM is given by a solid line.  KM is given by a thin dashed line.  DM is 
given by a bold dashed line, SM is given by a thin dotted line, and SDM is 
given by a bold dotted line.  The x-axis lists the items in descending order 
according to their exposure rates. 
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Figures 3-7 below are the histograms of the errors for each test variation.  The 

error for each examinee’s estimated ability is: 

θ θk k− , 

where θk  is the estimated ability level of examinee k after the exam, and θk  is examinee 

k’s true ability level.  There are 3,500 examinees for each test variation (500 examinees 

for each of the seven pre-selected ability levels).  The Wilcoxon Sign Rank test p-values 

are given in Table 4.  For this simulation, we use a two-sided test to determine whether 

there is a difference between the mean and medians of each shadow test variation’s 

deviation distribution to that of OM.  Using a 90% Confidence Interval, a p-value of 

under 0.05 would indicate a significant difference between the means and medians of a 

given formulation against OM.  The p-values for DM and SDM are equal to zero.  

Therefore, DM and SDM differ significantly from OM. 

 

 

 

Table 4: p-values versus OM for Wilcoxon Sign Rank Test 
DM and SDM significantly differ from OM because their p-values are 
below 0.05. 
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Figure 3: Error Histogram of OM 

The x-axis gives the error range for θ (given by θ θk k− ); The y-axis gives 
the frequency for the errors 

p-values overall 
KM DM SM SDM 

0.1417 0 0.2489 0 
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KM Histogram of Errors
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Figure 4: Error Histogram of KM 

The x-axis gives the error range for θ (given by θ θk k− ); The y-axis gives 
the frequency for the errors 
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Figure 5: Error Histogram of DM 

The x-axis gives the error range for θ (given by θ θk k− ); The y-axis gives 
the frequency for the errors 
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SM Histogram of Errors
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Figure 6: Error Histogram of SM 

The x-axis gives the error range for θ (given by θ θk k− ); The y-axis gives 
the frequency for the errors 
 

 

SDM Histogram of Errors
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Figure 7: Error Histogram of SDM 

The x-axis gives the error range for θ (given by θ θk k− ); The y-axis gives 
the frequency for the errors 
 

 

Figures 8 and 9 below show the bias and mean squared error (MSE) functions.  

The values in the graphs are discrete with polynomial interpolation (from MS Excel) to 

obtain the intermediate values.  In terms of the bias functions, each test variation 
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performs similarly with a large bias for more extreme negative ability levels.  The graphs 

are also consistent with the results from the Wilcoxon Sign Rank Test.  The KM and SM 

curves have steep slopes like the OM curve at the extreme negative values of θ.  OM 

performs better than KM and SM for most of the curve, and performs better than all of 

the shadow test variations at θ ≥ 0.5.  This is not surprising as there are no taxonomy 

constraints on OM.  The two variations that were shown to be significantly different than 

OM, DM and SDM, have a flatter slope and do not have the steep negative slope at the 

extreme negative ability levels.  Of particular note, DM performs better than OM for 

most of the curve at θ < 0.5.  Also, with the exception of θ = −0.5 where the magnitude of 

the bias is only slightly higher than that of OM, SDM performs better than OM at the 

same regions as DM. 

 

Because the bias functions for each variation behave similarly, it is not surprising 

that the MSE functions for each variation do as well, with large errors as θ approaches the 

extreme negative values.  OM performs the best for most of the curve, θ ≥ 0, and 

performs better than KM and SM for all values of θ.  Like the bias curve, the MSE curves 

for DM and SDM are flatter than OM, and therefore perform better at extreme negative 

values of θ, with DM’s MSE lower than SDM’s MSE for the whole curve. 
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Figure 8: Bias Function: 

OM is given by a solid line.  KM is given by a thin dashed line.  DM is 
given by a bold dashed line, SM is given by a thin dotted line, and SDM is 
given by a bold dotted line. 
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Figure 9: MSE Function: 

OM is given by a solid line.  KM is given by a thin dashed line.  DM is 
given by a bold dashed line, SM is given by a thin dotted line, and SDM is 
given by a bold dotted line. 
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V. CONCLUSIONS AND FUTURE RESEARCH 

 
A. CONCLUSIONS 
 The simulation results show that the current implementation of the CAT would 

benefit from the use of shadow tests.  The primary motivation behind using the shadow 

tests for the CAT-ASVAB is to control taxonomy.  This thesis introduces integer linear 

program (ILP) formulations that achieve this objective while our computational 

experience shows that the current method of item selection for the CAT-ASVAB (OM) 

has a taxonomy distribution that heavily favors one taxonomy group.  In the area of item 

exposure, there are also significant benefits over OM.  There are fewer unutilized items 

for each shadow test variation.  In the case of the first and second shadow test variation 

(KM and DM), all items are administered, and maximum exposure rates are also lower 

than OM.  The consequence of using the shadow test variations instead of OM is a slight 

loss in precision.  As stated in Chang and van der Linden’s paper, “the loss (in accuracy) 

can be made up for by adding a few items to the test, whereas the loss in credibility for a 

testing program due to item compromise or the financial loss involved in inefficient item 

usage is much more difficult to compensate [Chang and van der Linden, 2003].” 

Given the five metrics for the simulation (bias, mean squared error (MSE), 

exposure rates, solution times, and taxonomy distribution), DM would be the most 

recommended amongst the shadow test variations.  Like the rest of the shadow test 

variations, it meets the taxonomy constraints, with the solution time on average being the 

fastest.  It actually has a lower bias for most of the curve than OM.  Finally, the mean 

squared error (MSE) is the second lowest next to OM and even has a lower MSE at the 

negative values of θ.   On the other hand, because of the high maximum exposure rates 

and maximum solution times, the shadow test variations with item stratification (SM and 

SDM) would not be recommended, despite also having a close bias and MSE to OM. 

 

B. FUTURE RESEARCH 

Because an experimental set of items comprises the item pool for this thesis 

simulation, further research can use an existing or future item pool to execute the 



34 

formulations.  Also, only data for the Mathematical Knowledge (MK) test is used.  

Therefore item pools for the other CAT-ASVAB tests can be used in future research.  

Another area that can be extended is the sampling of the examinees.  One could use a 

continuous distribution instead of sampling discrete values of θ.  Also, this thesis only 

uses MSE and bias, whereas the current CAT-ASVAB uses the Birnbaum Score 

Information Function to measure precision of the exam [Sands, Waters, and McBride 

1999].  Therefore, future research can also use this function. 
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